Math Circles Grade 11/12 Session 2

Annex Knur
14 Feb , 2024
\qquad

Limits

The graph represents

$$
\lim _{x \rightarrow 5} f(x)=L
$$

limit of $f(x)$ as

left hand limit $\rightarrow \operatorname{lt}_{x \rightarrow 5^{-}} x+4$
General

$$
\operatorname{lt}_{x \rightarrow a^{-}} f(x)
$$

right hand limit $\rightarrow \operatorname{lt}_{x \rightarrow 5^{+}} 3 x \quad \operatorname{lt}_{x \rightarrow a^{+}} f(x)$
What if the function has different limit values from left and right side?

$$
\begin{array}{lc}
\lim _{x \rightarrow 3^{-}} f(x)=3 & \text { (Limit from } \\
\lim _{x \rightarrow 3^{+}} f(x)=5 & \text { (Limit side) } \\
\text { Since } \lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x) &
\end{array}
$$

$\therefore \lim _{x \rightarrow 3} f(x)$ does not exist.

Finding limits
While finding limits is a vast topic, we will cover basic limits only, to give you a rough idea of rate of change calculations.

$$
\begin{aligned}
& \lim _{x \rightarrow 3} 5 x=5(3)=15 \\
& \lim _{x \rightarrow 10} \frac{x+5}{x+10}=\frac{10+5}{10+10}=\frac{15}{20}=\frac{3}{4} \\
& \lim _{x \rightarrow 5} \frac{x-5}{\left(x^{2}-5^{2}\right.}=\lim _{x \rightarrow 5} \frac{x-5}{(x-5)(x+5)}=\lim _{x \rightarrow 5} \frac{1}{x+5}=\frac{1}{5+5}=\frac{1}{10}
\end{aligned}
$$

Rate of change or derivative
Let $y=f(x)$ be a function.
The rate of change of $f(x)$ at $x=4$ is given as

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x+h-x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

limit as $h \rightarrow 0$
It is denoted by $\frac{d f}{d x}$ and $f^{\prime}(x)$.
That is $\frac{d f}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Let $f(x)=x^{2}$. Find $\frac{d f}{d x}$.

$$
\begin{aligned}
\frac{d f}{d x}= & \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
= & \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h} \quad\left(\frac{0}{0} \text { form }\right) \\
= & \lim _{h \rightarrow 0} \frac{x^{2}+h^{2}+2 x h-x^{2}}{h^{h}} \\
= & \lim _{h \rightarrow 0} h^{h^{2}+2 x h} \\
= & \lim _{h \rightarrow 0} \frac{h(h+2 x)}{h} \\
= & \lim _{h \rightarrow 0} h+2 x \\
& =0+2 x \\
& =2 x
\end{aligned}
$$

Some properties of derivatives

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

(i) $\frac{d}{d x}(f \pm g)=\frac{d f}{d x} \pm \frac{d g}{d x} \quad\left[\frac{d}{d x}(k)=0\right.$ any $k \in \mathbb{R}$
(ii) $\frac{d}{d x}(f \cdot g)=\left(\frac{d f}{d x}\right) g(x)+f(x)\left(\frac{d g}{d x}\right)$ Product $\begin{array}{r}\text { rule }\end{array}$
eq. $\frac{d}{d x}\left(x^{2}+2\right)=\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(2)$

$$
\begin{aligned}
& =2 x+0 \\
& =2 x
\end{aligned}
$$

(iii) $\frac{d}{d x}(k f(x))=k \frac{d}{d x}(f(x))$

If. $\frac{d}{d x}\left(3 x^{2}\right)=3 \frac{d}{d x}\left(x^{2}\right)=3(2 x)=6 x$
eq.

$$
\begin{aligned}
\frac{d}{d x}\left(x^{3}\left(x^{2}+3\right)\right) & =\frac{d}{d x}\left(x^{5}+3 x^{3}\right) \\
& =\frac{d}{d x}\left(x^{5}\right)+\frac{d}{d x}\left(3 x^{3}\right) \\
& =5 x^{4}+3 \frac{d}{d x}\left(x^{3}\right) \\
& =5 x^{4}+3\left(3 x^{2}\right) \\
& =5 x^{4}+9 x^{2}
\end{aligned}
$$

$$
\frac{d}{d x}(f \cdot g)=\left(\frac{d f}{d x}\right) g(x)+f(x)\left(\frac{d g}{d x}\right) \begin{gathered}
\text { Product } \\
\text { rule }
\end{gathered}
$$

eg. $\frac{d}{d x}\left(x^{3}\left(x^{2}+3\right)\right)=\left(\frac{d\left(x^{3}\right)}{d x}\right)\left(x^{2}+3\right)+x^{3}\left(\frac{d}{d x}\left(x^{2}+3\right)\right)$

$$
\begin{aligned}
f(x)=x^{3}, g(x) & =x^{2}+3 \\
& =\left(3 x^{2}\right)\left(x^{2}+3\right)+x^{3}(2 x+0) \\
& =3 x^{4}+9 x^{2}+2 x^{4} \\
& =5 x^{4}+9 x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (iv) } \begin{aligned}
& \frac{d}{d x}\left(\frac{f}{g}\right)=\frac{g(x) \frac{d f}{d x}-f(x) \frac{d g}{d x}}{(g(x))^{2}} \\
&\text { eg: } \left.\begin{array}{rl}
\frac{d}{d x}\left(\frac{x^{3}+3}{x^{5}}\right) & =\frac{x^{5} \cdot \frac{d\left(x^{3}+3\right)-\left(x^{3}+3\right) \frac{d}{d x}\left(x^{5}\right)}{\text { rule) }}}{f(x)=x^{3}+3} \\
g(x)=x^{5}
\end{array}\right] \\
&=\frac{x^{5}\left(3 x^{2}\right)-\left(x^{5}+3\right)\left(5 x^{4}\right)}{x^{10}} \\
&=\frac{3 x^{7}-5 x^{7}-15 x^{4}}{x^{10}} \\
&=\frac{-2 x^{7}-15 x^{4}}{x^{10}}=\frac{-2}{x^{3}}-\frac{15}{x^{6}} \\
&=-2 x^{-3}-15 x^{-6}
\end{aligned}
\end{aligned}
$$

$$
\text { Let } f(x, y)=x^{2}+y^{2}+2 x y
$$

We need the concept of partial derivatives for this case.
[This is calculated by assuming
$\Rightarrow y$ is a constant]

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+y^{x}+2(x+h) y-x^{2}-\not y^{2}-2 x y}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+h^{2}+2 x h+2 x y+2 h y-\not x^{2}-2 x y}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2}+2 x h+2 h y}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(h+2 x+2 y)}{\not h h} \\
& =\lim _{h \rightarrow 0} h+2 x+2 y \\
& =0+2 x+2 y \\
& =2 x+2 y .
\end{aligned}
$$

This is calculated by assuming x is a constant

Similarly,

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h} \\
& =2 x+2 y
\end{aligned}
$$

Then the rate of change of f is called gradient of f and is denoted by ∇f.

$$
\nabla f=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

In the above case, $\nabla_{f}=\left[\begin{array}{l}2 x+2 y \\ 2 x+2 y\end{array}\right]$

The exponential function
a^{x} where a is a constant and x is a variable

Special case:
$a=e \approx 2.71828$
e is a transcendental

$$
f(x)=e^{x}
$$

The sigmoid function

$$
\sigma(x)=\frac{1}{1+e^{-x}}=\frac{e^{x}}{1+e^{x}}
$$

bounded and strictly increasing function
$\underbrace{\text { ReL }}_{\downarrow}$ function
Rectified linear unit

$$
f(x)=\max (0, x)
$$

f

$$
\begin{aligned}
& f(3)=3 \\
& f(-4)=0
\end{aligned}
$$

Q1- Evaluate the following limits:
(a) $\lim _{x \rightarrow 5} x^{2}+2 x+3$
(b) $\lim _{x \rightarrow 0} \frac{x^{2}+x}{x}$
(C) $\lim _{x \rightarrow 2} \frac{7 x-14}{x^{2}-4 x+4}$
(d) $\lim _{x \rightarrow-3} \frac{6 x+18}{(x+4)(x+3)}$

Q2- Let

$$
f(x)=\left\{\begin{array}{l}
x \text { for } x<0 \\
x-2 \text { for } x \geq 0
\end{array}\right.
$$

Evaluate $\lim _{x \rightarrow 2} f(x)$ and $\lim _{x \rightarrow 0} f(x)$.
Q3- Find $\frac{d f}{d x}$ if $(a) f(x)=x^{2}+2 x+4$.
(b) $f(x)=x^{3}$

Q4- Find ∇f if $f(x, y)=x^{3}+2 x^{2}+3 x^{2} y+3 x y+4$.
Q5- Find ∇f if $f(x, y, z)=x+y+z^{2} x$
Q6- Find the derivative of sigmoid function.
(Assume that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$)
Q7- Find $\frac{d}{d x}\left(\frac{x^{3}+3}{x^{5}+2 x^{2}}\right)$ using quotient rule.

Sol. $1 \rightarrow$ (a) $\lim _{x \rightarrow 5} x^{2}+2 x+3=5^{2}+2(5)+3=38$
(b) $\lim _{x \rightarrow 0} \frac{x^{2}+x}{x}=\lim _{x \rightarrow 0} \frac{x(x+1)}{x}=0+1=1$
(c) $\lim _{x \rightarrow 2} \frac{7 x-14}{x^{2}-4 x+4}=\lim _{x \rightarrow 2} \frac{7(x-2)}{(x-2)^{2}}=\lim _{x \rightarrow 2} \frac{7}{x-2}=\infty$
(d) $\lim _{x \rightarrow-3} \frac{6 x+18}{(x+4)(x+3)}=\lim _{x \rightarrow-3} \frac{6(x+3)}{(x+4)(x+3)}=\frac{6}{-3+4}=6$

Sol. $2 \rightarrow$

$$
\begin{aligned}
& \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} x-2=2-2=0 \\
& \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x=0 \\
& \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x-2=-2
\end{aligned}
$$

Since $\lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
$\therefore \lim _{x \rightarrow 0} f(x)$ does not exist

Sol. $3 \rightarrow$ (a)

$$
\begin{aligned}
\frac{d f}{d x}=\frac{d}{d x}\left(x^{2}+2 x+4\right) & =\frac{d}{d x}\left(x^{2}\right)+\frac{d}{d x}(2 x)+\frac{d}{d x}(4) \\
& =2 x+2 \frac{d(x)}{d x}+0 \\
& =2 x+2
\end{aligned}
$$

(b) $\frac{d f}{d x}=\frac{d}{d x}\left(x^{3}\right)=3 x^{2}$

Sol. $4 \rightarrow$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=3 x^{2}+4 x+6 x y+3 y \\
& \frac{\partial f}{\partial y}=3 x^{2}+3 x \\
& \nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]=\left[\begin{array}{c}
3 x^{2}+4 x+6 x y+3 y \\
3 x^{2}+3 x
\end{array}\right]
\end{aligned}
$$

Sol. $5 \rightarrow$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=1+z^{2} \\
& \frac{\partial f}{\partial y}=1 \\
& \frac{\partial f}{\partial z}=2 z x \\
& \nabla f=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]=\left[\begin{array}{c}
1+z^{2} \\
1 \\
z z x
\end{array}\right]
\end{aligned}
$$

Sol. $6 \rightarrow$

$$
\begin{aligned}
& \frac{d \sigma}{d x}=\lim _{h \rightarrow 0} \frac{\sigma(x+h)-\sigma(x)}{h}=\lim _{h \rightarrow 0}\left(\frac{e^{x+h}}{1+e^{x+h}}-\frac{e^{x}}{1+e^{x}}\right) \frac{1}{h} \\
&=\lim _{h \rightarrow 0} \frac{e^{x+h}\left(1+e^{x}\right)-e^{x}\left(1+e^{x+h}\right)}{\left(1+e^{x+h)}\left(1+e^{x} h\right.\right.} \\
&=\lim _{h \rightarrow 0} \frac{e^{x+h}+e^{2 x+h}-e^{x}-e^{2 x+h}}{\left(1+e^{x+h}\right)\left(1+e^{x}\right) h} \\
&
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{\left(18 e^{x+h}\right)\left(1+e^{x}\right) h} \\
& =\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{\left(1+e^{x+h}\right)\left(1+e^{x}\right) h} \\
& =\frac{e^{x}}{\left(1+e^{x}\right)^{2}} \cdot 1 \quad\left(\because \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \text { is given }\right) \\
& =\frac{e^{x}}{\left(1+e^{x}\right)^{2}}
\end{aligned}
$$

Sol. $7 \rightarrow \frac{d}{d x}\left(\frac{x^{3}+3}{x^{5}+2 x^{2}}\right)=\frac{\left(x^{5}+2 x^{2}\right)\left(3 x^{2}\right)-\left(x^{3}+3\right)\left(5 x^{4}+4 x\right)}{\left(x^{5}+2 x^{2}\right)^{2}}$

$$
=\frac{-2 x^{7}-13 x^{4}-12 x}{\left(x^{5}+2 x^{2}\right)^{2}}
$$

